1 Introduction to Bound Metal Deposition™

2 Summary of BMD™ Guidelines
 A Design guidelines (CAD modeling)
 B Fabricate™ model prep guidelines

3 Selecting Parts for 3D Printing

4 BMD Considerations and Best Practices
 A Printing with infill
 B Design optimization for printing, debinding, and sintering

5 Glossary
Bound Metal Deposition

The Studio System™ is a three-step solution that automates metal 3D printing. Integrated through Desktop Metal’s cloud-based software, it delivers a seamless workflow for printing complex parts in-house—from digital file to sintered part.

Print

The Studio System printer uses a process called Bound Metal Deposition™, or BMD™. BMD is similar to one of the most widely-used 3D printing technologies, Fused Filament Fabrication, FFF. Instead of filament, the Studio System uses bound metal rods—metal powder held together by a wax and polymer binder. The rods are fed through a heated extruder onto the build plate. The printer shapes the part layer by layer, line by line — producing a printed part, or “green part.”

Debind

The green part is then placed into the debinder where it is immersed in proprietary debind fluid, dissolving primary binder and creating an open-pore channel structure to prepare the part for sintering. Once the debind cycle is complete the part is referred to as a “brown” part.

Sinter

The brown part is placed into the furnace where it is heated to temperatures near melting—removing the remaining binder and causing the metal particles to fuse together as the part is sintered. This step necessitates design considerations unique to Bound Metal Deposition because sintering has implications for part features, build orientation, and support structures.
Summary of BMD Guidelines

To leverage the advantages of additive manufacturing, it is important to optimize your design for the BMD process—printing, debinding, and sintering.

<table>
<thead>
<tr>
<th>CAD Modeling Guidelines</th>
<th>Standard Printhead</th>
<th>Hi-Res Printhead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400 μm</td>
<td>250 μm</td>
</tr>
<tr>
<td>Maximum Part Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X 240mm 9.4in</td>
<td>X 60mm 2.4in</td>
<td></td>
</tr>
<tr>
<td>Y 150mm 6.0in</td>
<td>Y 60mm 2.4in</td>
<td></td>
</tr>
<tr>
<td>Z 155mm 6.1in</td>
<td>Z 60mm 2.4in</td>
<td></td>
</tr>
</tbody>
</table>

The build volume of the Studio printer is 300 x 200 x 200 mm (12 x 8 x 8 in). Due to part shrinkage during sintering, the bounding box is 240 x 150 x 155 mm (9.4 x 6.0 x 6.0 in). Fabricate™ scales parts using a scaling factor between 17% and 25%, depending on material. To optimize for fabrication success, the recommended maximum part size is 150 x 150 x 110 mm (6.0 x 6.0 x 4.3 in).

Minimum Part Size		
X 6mm 0.24in	X 3mm 0.14in	
Y 6mm 0.24in	Y 3mm 0.14in	
Z 6mm 0.24in	Z 3mm 0.14in	

The minimum part size considers the minimum number of bottom layers, top layers, and toolpaths within a wall required to produce a successful part.

| **Minimum Wall Thickness** | 1.0mm 0.04in | 0.6mm 0.02in |

The minimum wall thickness considers structural integrity during sintering. Wall thickness must be at least two toolpaths wide, or approximately 1mm. When printing a wall greater than 8mm tall, the ratio of height to width must not exceed 8:1.

| **Minimum Hole Size** | 1.50mm 0.06in | 0.75mm 0.03in |

Similar to most FFF style printers, holes on the Studio System print slightly undersized. To ensure accurate hole size, hole dimensions should be increased by 0.30 – 0.35mm depending on the print orientation. Alternatively, hole dimensions can be left as-is and machined to the intended specification.
Summary of BMD Guidelines

<table>
<thead>
<tr>
<th>CAD Modeling Guidelines</th>
<th>Standard Printhead</th>
<th>Hi-Res Printhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Pin Diameter</td>
<td>3.0mm 0.12in</td>
<td>1.5mm 0.06in</td>
</tr>
</tbody>
</table>

Pins should obey the aspect ratio guideline of 8:1.

<table>
<thead>
<tr>
<th>Minimum Embossed Feature</th>
<th>X/Y</th>
<th>W 0.45mm 0.018in</th>
<th>H 0.50mm 0.020in</th>
<th>Z W 0.25mm 0.010in</th>
<th>H 0.50mm 0.020in</th>
</tr>
</thead>
</table>

Embossed features are proud of the surface of the model. If an embossed feature is too thin, it likely will not print.

<table>
<thead>
<tr>
<th>Minimum Debossed Feature</th>
<th>X/Y</th>
<th>W 0.45mm 0.018in</th>
<th>H 0.50mm 0.020in</th>
<th>Z W 0.25mm 0.010in</th>
<th>H 0.50mm 0.020in</th>
</tr>
</thead>
</table>

Debossed features are typically used for surf detailing and text on the surface of the model. If a debossed feature is too thin, it risks over-extrusions that fill in the engraved feature.

<table>
<thead>
<tr>
<th>Minimum Unsupported Overhang Angle</th>
<th>40°</th>
<th>40°</th>
</tr>
</thead>
</table>

Overhangs greater than 40° from planar will require supports. Supports are important during printing, but are most critical during sintering. While the printing process can tolerate a 40° overhang, sintering may tolerate much less. It will depend on the geometry, but one should avoid cantilevered masses, and small features that cause the entire part to sit on top of supports.

<table>
<thead>
<tr>
<th>Minimum Clearance</th>
<th>0.3mm 0.0012in</th>
<th>0.2mm 0.0080in</th>
</tr>
</thead>
</table>

The additive nature of 3D printing enables the fabrication of multiple parts as printed in-place assemblies with moving or embedded parts. Interlocking components should have 0.300mm (0.01in) of clearance.
Summary of BMD Guidelines

<table>
<thead>
<tr>
<th>Modeling Your Part In CAD</th>
<th>Standard Printhead</th>
<th>Hi-Res Printhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect Ratio</td>
<td>8:1</td>
<td>8:1</td>
</tr>
</tbody>
</table>

Unsupported tall, thin features are challenging for debind and sintering processes and should be limited when possible. The ratio of height to width for tall walls or pillars should not exceed 8:1. Tall cylinders and walls are the least stable geometries.

<table>
<thead>
<tr>
<th>Fabricate™ Guidelines</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infill Wall Spacing</td>
<td>1.50-3.20mm</td>
<td>1.75mm</td>
</tr>
<tr>
<td></td>
<td>0.06-0.13in</td>
<td>0.07in</td>
</tr>
</tbody>
</table>

In Fabricate™, the default setting for infill line spacing is 2.8 mm for the standard print head and 1.75mm for the high-res printhead. Increasing the spacing between lines of infill makes the part less dense while decreasing the spacing between infill lines makes the part more dense. Modifying this setting will impact the duration of the debind cycle.

| **Maximum Shell Thickness** | 4mm 0.16in With infill | 4mm 0.16in With infill |
| | 10mm 0.40in Without infill | 10mm 0.40in Without infill |

Together, the part’s walls, top layers, and bottom layers comprise the part shell. The limit to shell thickness is due to the debind process. Debind duration is a function of overall cross-sectional thickness. Parts with thick walls or a high-density infill will take longer to debind.

| **Layer Height** | 150 μm-200 μm | 50 μm |

Larger layer heights allow for faster print times, but there is a trade-off between print time and surface quality. Smaller parts are better suited to a finer layer height to ensure that fine features are within tolerance. Larger parts use the coarse profile to ensure fast print times and strong support structures.
Selecting parts for BMD™

Additive manufacturing and the Studio System open up new capabilities for producing metal parts. However, not all parts make sense to 3D print and oftentimes simple geometries or parts produced in high volumes are more cost-effective to produce with other technologies. Part geometry, economics, and performance are important factors tied to the fabrication method.

As you evaluate parts for BMD™, review a wide range parts—keep in mind your objective and use the decision funnel (left) to down-select parts best suited for the process. To begin, identify custom parts, low-volume parts, complex parts, and parts with long lead times. Eliminate parts not appropriate based on size and/or geometry and that cannot be modified to follow the BMD™ design guidelines. Use estimates for BMD™ fabrication time and part cost to eliminate parts for which BMD is not cost-competitive or does not reduce fabrication time. Benchmark the selected parts to evaluate part performance.

When selecting parts for BMD™, it is important to keep in mind that existing parts were likely designed for another fabrication process. There may be value in producing these parts on the Studio System without design modifications - in fact, this is what most people do when they start using the System. However, simply replicating a design subjects the part to the restrictions of the 3D printing process whereas adapting or optimizing your design for BMD™ allows you to capture the benefits of 3D printing.

Cost estimates are essential for selecting parts for fabrication on the Studio System. Upload your design file to Fabricate™ to view estimates for media costs (metal and ceramic), as well as estimated print, debind, and sintering times. Depending on the way your organization calculates ROI, other costs like equipment, energy, service, and consumables, may be important to take into account.
Considerations & Best Practices

Printing with Infill

The Role of Infill
Similar to parts printed using Fused Filament Fabrication (FFF), all parts printed with the Studio System contain infill. Infill describes the internal lattice structure printed throughout the part, enclosed by the solid walls that make up the shell of the part—creating what is called, closed-cell infill.

The ability to lightweight parts with infill is a key advantage with Additive Manufacturing (AM). Using subtractive processes, you must redesign the exterior of the part or select a lighter-weight material in order to reduce overall part weight. The top and bottom layers are printed solid (without infill), while the middle layers are printed with solid outer walls and the triangular infill pattern making up the interior structure.
Considerations & Best Practices

Printing with Infill

Infill & Fabrication Time
The use of infill reduces the amount of material and time required to print a part. It also reduces the debind and sinter cycle times which depend on the cross-sectional thickness (wall thickness + lines of infill to the center of the part). A solid part will take much longer to debind and sinter, or it might not fully debind which can lead to serious part defects like cracking or blistering.

<table>
<thead>
<tr>
<th>Example Part</th>
<th>Example Part w/ Infill</th>
<th>Example Part w/o Infill</th>
<th>Savings Due to Infill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Time (Hours)</td>
<td>7</td>
<td>11</td>
<td>36%</td>
</tr>
<tr>
<td>Debind Time (Hours)</td>
<td>19</td>
<td>50</td>
<td>62%</td>
</tr>
<tr>
<td>Total Fabrication (Hours)</td>
<td>67</td>
<td>100</td>
<td>33%</td>
</tr>
<tr>
<td>Material (g)</td>
<td>170</td>
<td>280</td>
<td>40%</td>
</tr>
<tr>
<td>Cost of Material</td>
<td>$20</td>
<td>$33</td>
<td>40%</td>
</tr>
<tr>
<td>Final Part Mass (g)</td>
<td>118</td>
<td>220</td>
<td>46%</td>
</tr>
</tbody>
</table>

Infill & Part Strength
In combination with the outside shell, infill-based structures feature excellent rigidity at minimal weight. The shape of the infill geometry has a significant impact on both the effective modulus and the degree of anisotropy of structural properties. The Studio Printer prints with triangular infill, which offers several benefits over hexagonal or square infill geometries. Triangular infill results in a constant elastic modulus in the X-Y plane, ranging from 18-28% of the solid material’s elastic modulus.
Considerations & Best Practices

Optimizing for Printing, Debinding, and Sintering

Strategies For Reducing Debind Time
During the debinding process, the part is fully immersed in debind fluid. The debind fluid is a solvent that dissolves the wax portion of the binder to create an open-pore structure in the part allowing the remainder of the polymer binder to escape during sintering. The debind fluid surrounding the part must diffuse through the printed material until it reaches the center of the part. The distance that the fluid travels from the outer wall to the part center is known as the cross-sectional thickness. Fabricate uses the cross-sectional thickness to calculate debind time.

Debind time is impacted by the wall thickness of the part. The cross-section reveals the wall lines (the compound path created by the two perimeter circles) and the lines of triangular closed-cell infill. Debind fluid flows freely between in the voids created by the infill, but dissolves slowly through the solid material of the wall lines and each line of infill. Increasing wall line count leads to an increase in the length of the debind cycle.

Tip 2 [using Fabricate]:
Fabricate’s default setting for wall thickness, top layer, and bottom layer balance part strength and debind time. Increasing wall line count, top layer, and bottom layer in Fabricate’s advanced settings can increase part strength, but will lead to longer debind times.

Cross-Sectional Thickness
The cross-sectional thickness is equal to the wall thickness plus the lines of infill to the center of the part.

Tip 1 [using CAD]:
Reduce the cross-sectional thickness to shorten the debind time. Identify opportunities to modify your part design to reduce the cross-sectional thickness. One approach is to remove or ‘core’ thick sections of the part (similarly, you can add large indentations to thick sections of the part). For the example part, a cylindrical core has been removed. Now debind fluid can enter the part through the outer and inner walls. The distance to the center of the thick region of the part is, very noticeably, much smaller.

» Coring Example: Mold Insert
Coring the mold insert reduced the debind time by 3.5X and 14X, depending on the design approach.

Tip One
Reduce the cross-sectional thickness to shorten the debind time. For the example part, below, a cylindrical core has been removed.

Tip 1 [using CAD]:
Reduce the cross-sectional thickness to shorten the debind time. Identify opportunities to modify your part design to reduce the cross-sectional thickness. One approach is to remove or ‘core’ thick sections of the part (similarly, you can add large indentations to thick sections of the part). For the example part, a cylindrical core has been removed. Now debind fluid can enter the part through the outer and inner walls. The distance to the center of the thick region of the part is, very noticeably, much smaller.
Considerations & Best Practices

Optimizing for Printing, Debinding, and Sintering

Optimize Print Orientation
The way you choose to orient your part during printing has implications for support material usage, surface quality, and fabrication time. When orienting your part, consider the following:

» Minimize support volume
Minimize support volume to save print time and material. Avoid large overhanging portions of your part that rest on support structures.

» Avoid high centers of gravity
Avoid orientations that elevate the part’s center of gravity.

» Avoid critical surfaces in contact with supports
Surfaces in contact with support structures will have rougher surface quality. It is best to avoid having critical surfaces contact support structures.

Fillet Sharp Inside Edges
Sharp edges can concentrate stress in the part and increase the risk of cracking during sintering. Whenever possible, add a fillet to sharp interior edges.

Avoid Printing Hardware
There are few instances when printing metal hardware will be less-expensive than purchasing it off-the-shelf. Be strategic and think about the cost and benefit of printing parts—hardware rarely makes sense to print.

Holes
For horizontal holes of certain diameters supports may be necessary, but Fabricate automatically generates supports. Users can avoid using support structures for horizontal holes by redesigning the circular hole shape into a teardrop shape, which utilizes a self-supporting angle. The self-supporting angle eliminates the need for supports.
Considerations & Best Practices

Optimizing for Printing, Debinding, and Sintering

Printed Threads
Many 3D printing companies, including those selling laser powder-bed fusion systems, recommend printing holes and then tapping threads. For the Studio System, tapped threads are recommended for threads from M3 to M9. In these cases, increase the wall line count to 5-7 lines (3 lines is the default setting) to ensure adequate material for cutting threads. For threads M10 and larger, printing and chasing will produce the best results.

<table>
<thead>
<tr>
<th>Thread Size</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>< M10</td>
<td>Print hole, tap threads</td>
</tr>
<tr>
<td>≥ M10</td>
<td>Print threads, chase threads</td>
</tr>
</tbody>
</table>

Cup-shaped Parts
During the debinding process, the entire part is immersed in debind fluid. After debinding is complete, the fluid is drained from the tank and distilled for re-use in the next run. If the part being debound has a "cup" shape, that feature will hold debind fluid and prevent the part from completely drying.

Simple modifications can be made to parts to ensure that all of the debind fluid drains from the part being debound. Adding small drainage holes (as small as 1mm) to your part design will allow the fluid to drain.

Alternatively, part orientation can also be adjusted. Keep in mind that part should have the same orientation for printing, debinding, and sintering so changing the part orientation for debinding means changing the orientation for printing and sintering as well. It is recommended that users orient parts in a way that optimizes full process success.

Clearances

» Printed-in-places assemblies
For components of a moving assembly, clearance of 0.3mm (0.012in) clearance is recommended between components.

» Close fit
For components to mate after sintering, a larger clearance of 0.3mm to 0.6mm (0.012-0.024in) is recommended.
Considerations & Best Practices

Optimizing for Printing, Debinding, and Sintering

Supports
The interface layer plays a very important role in the BMD part fabrication process. During the furnace cycle, the interface layer becomes a powder that physically keeps the part from sintering to the support structures. This is what enables Separable Supports and the significant benefit of allowing users to remove support structures by hand. However, for some geometries, the fact that support structures are not strongly attached to parts during the sintering process may mean that parts can shift or separate from supports during the sintering process.

One specific example is a feature that sits at an angle atop a support structure but does not meet the default angle requirement (of 40°) for generating overhang supports. In example one (shown below), the feature without overhang supports will slide down toward the base of the object during the sintering process. To prevent the part from shifting or sliding, the Fabricate angle setting for support overhang generation has been manually modified to a lower angle (below 40°), causing supports to build for the overhanging features. This support structure will now "cradle" the part during sintering, preventing the part from shifting.

Example One
Tip: Adjust the support angle to a lower angle, which will cause supports to build to the overhang features. The support structure will now "cradle" the part during sintering, preventing the part from shifting.

Modify support angle criteria to generate support for overhang

Example Two
Tip: If you notice that Fabricate is generating supports with an angled base, consider modifying your design in CAD. Add a small lip or bump to the part where it contacts the bottom of the support structure.

Modify part geometry to secure support structure

It is also possible for support structures to shift during the sintering process if they are built atop an angled surface. While a support structure with a flat base will remain stable during sintering process, one built on an angled base may want to slide away from the part. In order to avoid this situation, the original part geometry should be modified. Adding a small lip or bump to the part where it contacts the bottom of the support structure will prevent the support structure from shifting during sintering.
Considerations & Best Practices

Optimizing for Printing, Debinding, and Sintering

Aspect Ratio
The most slender vertical cylinder that can be printed, debound, and sintered has an aspect ratio of 8:1 (height : diameter) and is attached to a larger base - rather than being a free-standing feature. If the slender cylinder is a free-standing feature and sits directly on the raft instead of being attached to a part, the cylinder will be less stable. This is because the cylinder will sit directly on the ceramic interface layer, which turns to a powder during the sintering process, creating an unstable base for the cylinder to sit on. For free-standing cylinders, the aspect ratio of the feature should be reduced by 40% to about 5:1.

Most features and parts are not perfect vertical cylinders. In these cases, it is important to note where the center of gravity of the feature is located. Features are most stable when the center of mass is sitting above the base of the feature. A less stable feature is one where the center of mass is not vertically supported. An example is a tall pillar on a slight angle (shown left). During sintering, when the material is weak, the feature will want to fall over, or slump.

There are a few options for addressing features whose center of mass does not sit above the base of the features. Through modifications to the original geometry, stable features can be created. The first solution is to attach the overhanging feature to a larger, more stable part. In this instance, the center of mass has now been moved to a location above the base of the feature. Another solution is to add support trussing, pillars, or other features. When adding supporting features, attach them to the original feature in a manner that will support the part during sintering. It is good practice to ensure that the center of mass is located within the bounds of the base of the original feature and support features.
Glossary

Studio System Printer / Studio Printer / Printer
Desktop Metal’s office-friendly metal 3D printer.

Studio System Debinder / Studio Debinder / Debinder
Desktop Metal’s office-friendly debinder; immerses the part to remove binding material, creating an open-pore structure in preparation for sintering.

Studio System Furnace / Studio Furnace / Furnace
Desktop Metal’s office-friendly sintering furnace; sinters the part to remove remaining binder and produce a metal part with densities between 96-99.8% (depending on the material).

Fabricate™
With expert metallurgy built-in, Fabricate software controls your Studio System workflow from digital model to sintered part.

Separable Supports™
Technology in which parts are easily separated from their support structures due to a Ceramic Release Layer (or interface layer).

Studio System Materials
Metal or ceramic materials available for the Studio system; specially-formulated bound metal or ceramic rods.

17-4 PH Media Cartridge
Metal particles mixed in a plastic binder. Approximately 200 rods per cartridge. This is the material that is printed and forms the final metal part.

Interface Media Cartridge
Ceramic particles mixed in a plastic binder. ~18 rods per cartridge. Used to keep support structures from sintering to the part in the furnace.

Green Part
The state of the part after printing, before debinding.

Brown Part
The state of the part after debinding, before sintering.

Sintered Part
The state of the part after sintering.

Print Sheet
A polypropylene sheet that the part is printed on top of. The sheet is removed from the build platform after printing has finished, and the part is peeled from the sheet. Sheets are designed to be single use.

Debind Fluid
Solvent that is used to debind Studio System parts - see the SDS for more information.

Gas no. 1
Gas that is used in the furnace during the sintering cycle. Ensures an inert environment during sintering.